Investigadores argentinos logran importantes avances en la edición genómica de cultivos de gran interés agronómico

Lo más leído

ADM invierte en la mayor planta de harina de insectos del planeta

Estará ubicada en Decatour, EEUU, donde cuenta con un gigantesco complejo de procesamiento de maíz. Aprovechará sus subproductos y su energía térmica residual.

Investigación demuestra los beneficios del maní en pacientes diabéticos

Es una opción de bajo costo que ayuda a disminuir la glucosa en sangre si se consume diariamente como parte de una dieta balanceada.

El avance en la captura de carbono podría cambiar las reglas del juego en la utilización de CO2

Científicos australianos desarrollaron un proceso que reduce a un tercio el costo de captura, lo que podría cambiar las reglas de juego de esta tecnología.

Cáscara de almendras: el residuo que pasó a tener mil usos

Las cáscaras de almendras son un producto de desecho en alza, pero su vida útil se puede alargar. En un laboratorio del Departamento de Agricultura de EE.UU, los investigadores han desarrollado varios métodos para reutilizarlas.

China exige a los agricultores que siembren más cereales en lugar de otros cultivos más rentables

La medida representa un giro en la política implementada en 1978 que permitió a los agricultores salir de la extrema pobreza al poder decidir ellos que cultivar.

Columna semanal

Entre la bronca y el romanticismo

Mientras el mundo acelera la transición hacía una economía baja en carbono, en Argentina se disfrazan nuevos impuestos para subsidiar más fósiles.
 
 

La edición del genoma de células de especies vegetales mediante el uso de nuevas tecnologías como “CRISPR” es algo relativamente sencillo de hacer. La dificultad reside en poder obtener una planta completa a partir de esas células que tienen el genoma editado. En algunas especies, esto es algo fácil, pero en otras la regeneración resulta en un proceso muy complicado y prácticamente artesanal.

En los últimos años, se han desarrollado varios enfoques moleculares que utilizan genes de desarrollo para mejorar las eficiencias de transformación. Sin embargo, la capacidad de regeneración sigue siendo muy poco eficiente para muchos de los cultivos y actualmente representa uno de los mayores cuellos de botella para la adopción de nuevas tecnologías como la edición genética por “CRISPR”.

En un trabajo publicado en la prestigiosa revista Nature Biotechnology, en el que participaron un investigador del CONICET y ex becarios doctorales y post-doctorales del Consejo, se demuestra la importancia de una nueva tecnología llamada “GRF-GIF” en la regeneración de plantas. Esta nueva tecnología permite generar fácilmente plantas transgénicas sin la necesidad de usar un gen de resistencia a antibióticos, y puede combinarse con otras tecnologías de punta como “CRISPR”, para el mejoramiento de cultivos.

Nueva proteína sintética: “GRF-GIF”

Hace unos 5 años, en el en el Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Juan Manuel Debernardi, en aquel momento becario post-doctoral de CONICET, y Javier Palatnik, investigador principal del CONICET, diseñaron una nueva proteína sintética llamada “GRF-GIF”, formada por un factor de transcripción “GRF” y un co-regulador “GIF”, y observaron que actuaba como un “potenciador” del crecimiento, que hacía que las plantas fueran más grandes y tuvieran mayor biomasa. Ese desarrollo fue patentado por el CONICET y la Universidad Nacional de Rosario.

Lectura sugerida

Luego, Debernardi continuó con un postdoctorado en el laboratorio del argentino Jorge Dubcovsky, genetista líder en el mejoramiento de trigo, en la Universidad de California en Davis (Estados Unidos). Allí se inició una colaboración entre ambos grupos para estudiar la función de la proteína “GRF-GIF” en trigo, aprovechando la experiencia de la unidad de transformación de plantas dirigida por David Tricoli. Los primeros resultados causaron mucha sorpresa, porque la proteína “GRF-GIF” aumentaba enormemente la regeneración de plantas de trigo. “Sabíamos que en las moléculas GRF-GIF había buenas perspectivas biotecnológicas, pero aún así fue sorprendente encontrar un aumento tan grande en la eficiencia de regeneración”, afirma Palatnik.

“Descubrimos que si introducimos GRF-GIF en una célula, la capacidad de esa célula de regenerar una planta aumenta enormemente. En algunas variedades de trigo aumentamos la eficiencia casi diez veces, y en otras variedades que antes no regeneraban nada pudimos obtener plantas. Esto es un game-changer para la comunidad de trigo. Además, para este trabajo, validamos estas observaciones en arroz y cítricos incluidos, y tenemos datos preliminares de que también funcionaría en otros cultivos como tomate, cebada y uva”, detalla Debernardi.

Mejoramiento de cultivos, CRISPR y GRF-GIF: tradicional vs nuevo

Mejorar un cultivo, ya sea por otorgarle mayor resistencia a patógenos, incrementar su calidad nutricional u organoléptica o aumentar su rendimiento, implica incorporar algún tipo de variación genética.

Tradicionalmente los programas de mejoramiento genético de cultivos se basaron en la incorporación de esta variación genética por cruzamientos y selección de plantas con características deseadas. Este proceso permitió inicialmente convertir plantas salvajes en variedades con caracteres adaptados a las necesidades de la agricultura -lo que se llama domesticación-.

Posteriormente, este proceso de cruzamiento y selección permitió la evolución de variedades con mayor rendimiento y calidad nutricional. Según los científicos, uno de los problemas de este enfoque tradicional es que generalmente se desconoce la identidad de la variación genética que es relevante para una determinada cualidad. Eso hace que el proceso sea poco eficiente y muy laborioso, básicamente porque con el cruzamiento se mezcla el material genético y luego se tiene que buscar algo que no se conoce muy bien.

Lectura sugerida

Hoy existen muchas herramientas para conocer cuáles son los cambios genéticos que permiten controlar y mejorar un carácter. Es aquí donde la técnica CRISPR cumple un rol transformador. La posibilidad de modificar el genoma con precisión (edición) permite introducir con alta eficiencia las variaciones genéticas que se deseen. “Desde un punto de vista tecnológico, nos permite incorporar rápidamente una variación genética interesante, por ejemplo, resistencia a hongos, directamente en una variedad comercial sin necesidad de cruzamientos”, destacan.

Los científicos destacan que CRISPR ofrece otra ventaja muy importante. Desde un punto de vista básico mediante esta técnica se pueden testear rápidamente hipótesis sobre el rol de diferentes variantes genéticas. Saber cuáles son las variantes genéticas importantes hace al mejoramiento tradicional mucho más eficiente, así se sabe lo que se busca.

“El problema hasta ahora es que la técnica CRISPR solo podía usarse con eficiencia en pocos cultivos y en pocas variedades dentro de un cultivo, por un problema de regeneración de la planta. Vos editás el genoma de una célula con CRISPR pero después tenés que regenerar la planta a partir de esa célula, y, como se mencionó anteriormente, esa regeneración es muy complicada de conseguir en muchos cultivos. Ahora, si usamos a CRISPR junto con GRF-GIF, entonces se solucionan los problemas y podés muy fácilmente obtener cultivos mejorados a través de CRISPR”, enfatiza Palatnik.

Los investigadores demostraron que al combinar las tecnologías GRF-GIF y CRISPR en un solo vector pueden generar una gran cantidad de plantas de trigo editadas en múltiples entornos comerciales. Este ha sido un cambio transformador en el laboratorio, porque ahora pueden producir cientos de plantas de trigo editadas en genes críticos para la floración y el desarrollo. “Creemos que esto va a ser muy importante para muchos otros cultivos, además del trigo”, detalla Debernardi. “Esta hipótesis está respaldada por la simplicidad de la tecnología GRF-GIF, la alta conservación de las proteínas GRF y GIF en todo el reino vegetal y la eficiencia de regeneración mejorada observada en nuestros experimentos de arroz, cítricos, uvas y pimientos”, agrega.

Lectura sugerida

El estudio del sistema GRF GIF es el resultado de quince años de investigación, que se plasmaron en tres patentes, de las cuales las dos primeras son 100 por ciento hechas en el IBR, en el marco de proyectos académicos que estudian cómo funcionan las células madre y la proliferación celular en las plantas, y dieron lugar a aplicaciones tecnológicas como plantas con mejor rendimiento. La última aplicación centrada en la regeneración de múltiples cultivos fue liderada por el grupo de Jorge Dubcovsky en la Universidad de California en Davis. “Fue un proceso paulatino en donde fuimos incrementando el conocimiento, siempre comenzando por un punto de vista académico y evaluando la posible transferencia tecnológica de los descubrimientos”, comenta Palatnik.

“La revolución en métodos y equipamientos tecnológicos en ciencias como la genómica, nos permiten conseguir mejoras de variedades cultivadas para aumentar la productividad o la respuesta al estrés. Podemos analizar la actividad de miles de genes a la vez, entender las características particulares que dan un mejor rendimiento y diseñar nuevas variedades que contengan las características deseadas”, concluye el investigador.

Fuente: Conicet.

 
 
 
 
 

Últimas Noticias

Cargill evalúa instalar la primera destilería de bioetanol de maíz en India

Rumores recientes indican que el gobierno estaría evaluando incluir en las concesión de préstamos subvencionados la producción de etanol a partir de granos.

Cambio de tendencia en la industria olivícola y la producción será menor al consumo

Es una bola de oxígeno para el olivar tradicional, que supone el 70 por ciento de la cosecha y que, sin duda, ha vivido momentos difíciles, dijo un especialista.

Cómo promover el almacenaje de carbono en sistemas ganaderos

Desde el INTA Paraná, Entre Ríos, destacan la importancia de los bosques naturales y pasturas para el secuestro de carbono en el suelo o en los árboles. En el marco de un proyecto Fontagro, comparten estrategias basadas en el manejo del rodeo y el pastoreo.

Lo que dejó el TECO 2020

Taller de Bioetanol-Combustible, con más de 1000 participantes provenientes de 18 países, presentó las últimas tendencias para impulsar la eficiencia del sector. En esta nueva edición que se llevo del 16 al 18 de noviembre, de manera virtual, el momento más destacado fue la mesa redonda en la que se analizó el caso argentino.

ADM invierte en la mayor planta de harina de insectos del planeta

Estará ubicada en Decatour, EEUU, donde cuenta con un gigantesco complejo de procesamiento de maíz. Aprovechará sus subproductos y su energía térmica residual.
 
 

Suscribite al Newsletter

Holler Box